Text-independent Speaker Verification Based on Probabilistic Neural Networks
نویسنده
چکیده
In this paper, a text-independent Probabilistic Neural Network (PNN)-based Speaker Verification system is presented. Modular structure with a distinct PNN for each enrolled speaker is used. A gender-dependent universal background model is built to represent the impostor speakers. A detailed description of the system, as well as the time required for training and processing all the test trials is given. The results obtained in the one-speaker detection task during the 2002 NIST Speaker Recognition Evaluation are reported. 1 This work was supported by the “Infotainment management with Speech Interaction via Remote microphones and telephone interfaces” INSPIRE project (IST-2001-32746). Hellenic Institute of Acoustics (HELINA) Acoustics 2002
منابع مشابه
Locally recurrent probabilistic neural network for text-independent speaker verification
This paper introduces Locally Recurrent Probabilistic Neural Networks (LRPNN) as an extension of the well-known Probabilistic Neural Networks (PNN). A LRPNN, in contrast to a PNN, is sensitive to the context in which events occur, and therefore, identification of time or spatial correlations is attainable. Besides the definition of the LRPNN architecture a fast three-step training method is pro...
متن کاملProbabilistic Neural Networks Combined with Gmms for Speaker Recognition over Telephone Channels
In this paper we study the applicability of Probabilistic Neural Networks (PNNs) as core classifiers to medium scale speaker recognition over fixed telephone networks. In particular, banking applications with up to 400 enrolled speakers and short training times are targeted. Two PNN-based open-set text-independent systems for Speaker Identification and Speaker Verification correspondingly are p...
متن کاملLocally Recurrent Probabilistic Neural Networks with Application to Speaker Verification
To improve speaker verification performance, we extend the wellknown Probabilistic Neural Networks (PNN) to Locally Recurrent Probabilistic Neural Networks (LRPNN). In contrast to PNNs that possess no feedbacks, LRPNNs incorporate internal connections to the past outputs of all recurrent neurons, which render them sensitive to the context in which events occur. Thus, LRPNNs are capable of ident...
متن کاملImpostor Modelling Techniques for Speaker Verification Based on Probabilistic Neural Networks
The impact of two different impostor modelling techniques on the performance of a Probabilistic Neural Networks (PNNs)-based text-independent speaker verification system is studied. Depending on the technique used for background codebook construction, two versions of the system are obtained: with one universal background codebook, common to all authorized speakers, and with an individual speake...
متن کاملKernel-Based Probabilistic Neural Networks with Integrated Scoring Normalization for Speaker Verification
This paper investigates kernel-based probabilistic neural networks for speaker verification in clean and noisy environments. In particular, it compares the performance and characteristics of speaker verification systems that use probabilistic decision-based neural networks (PDBNNs), Gaussian mixture models (GMMs) and elliptical basis function networks (EBFNs) as speaker models. Experimental eva...
متن کامل